Building on a classification of zeros of cubic equations due to the $12$-th century Persian mathematician Sharaf al-Din Tusi, together with Smale's theory of {\it point estimation}, we derive an efficient recipe for computing high-precision approximation to a real root of an arbitrary real cubic equation. First, via reversible transformations we reduce any real cubic equation into one of four canonical forms with $0$, $\pm 1$ coefficients, except for the constant term as $\pm q$, $q \geq 0$. Next, given any form, if $\rho_q$ is an approximation to $\sqrt[3]{q}$ to within a relative error of five percent, we prove a {\it seed} $x_0$ in $\{ \rho_q, \pm .95 \rho_q, -\frac{1}{3}, 1 \}$ can be selected such that in $t$ Newton iterations $|x_t - \theta_q| \leq \sqrt[3]{q}\cdot 2^{-2^{t}}$ for some real root $\theta_q$. While computing a good seed, even for approximation of $\sqrt[3]{q}$, is considered to be ``somewhat of black art'' (see Wikipedia), as we justify, $\rho_q$ is readily computable from {\it mantissa} and {\it exponent} of $q$. It follows that the above approach gives a simple recipe for numerical approximation of solutions of real cubic equations independent of Cardano's formula.
翻译:基于12世纪波斯数学家Sharaf al-Din Tusi的零点分类以及Smale的点估计理论,我们推导出一种高精度实数三次方程根的有效方法。首先,通过可逆变换,我们将任何实数三次方程化为四个具有$0$,$\pm1$系数的标准形式之一,除了常数项$\pm q$,其中$q\geq0$。接着,给定任何一种形式,如果$\rho_q$是到$\sqrt[3]{q}$的误差不超过五个百分点的近似值,我们证明可以选择一个种子$x_0$在$\{\rho_q, \pm .95\rho_q, -\frac{1}{3},1\}$内,使得在$t$个牛顿迭代下,某个实根$\theta_q$的误差$|x_t-\theta_q|\leq\sqrt[3]{q}\cdot 2^{-2^{t}}$。虽然计算一个好的种子,即$\sqrt[3]{q}$的近似值,被认为是“有些黑科技”(见维基百科),但我们证明$\rho_q$可以从$q$的“底数”和“指数”轻松计算。因此,以上方法给出了一个简单的数值逼近实数三次方程的方法,而不依赖于卡丹诺公式。