项目名称: 弱辛Banach空间上的Maslov指标的研究
项目编号: No.11471169
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 朱朝锋
作者单位: 南开大学
项目金额: 60万元
中文摘要: 我们考虑在一个固定Bannach空间上的一个连续变化的弱辛结构曲线。在这族辛Banach空间上我们有一个指标为0的Fredholm的Lagrange子空间对的曲线。我们将通过适当的辛分解把Maslov指标定义为辛约化到有限维的情形。 通过这种办法,我们将证明了有限维情形Maslov指标的性质依然满足。在一些自然条件下,我们将证明Maslov指标在辛约化下是不变的。 作为一个应用,我们一个具有最小定义域D_m的闭对称算子的定义域包含于中间定义域D_M的自伴Fredholm扩张。我们主要的例子是具有常内解空间维数的紧带边流形上的正阶椭圆微分算子,以及它们的适定边值条件。我们将证明关于它们的一般谱流公式。
中文关键词: 哈密顿系统;弱辛Banach空间;辛约化;Maslov指标;谱流
英文摘要: We consider a curve of Fredholm pairs of Lagrangian subspaces of index 0 in a fixed Banach space with continuously varying weak symplectic structures. We shall show that the Maslov index can be defined by symplectic reduction to the classical finite-dimensional case under a suitable symplectic decomposition. In this way, the usual properties of the Maslov index are easily derived from the well-known properties of the Maslov index in finite dimensions. We shall show that the Maslov index is invariant under symplectic reduction under some natual conditions. As an application, we consider a continuous curve of self-adjoint Fredholm extensions of continuously varying closed symmetric operators with fixed (minimal) domain D_m and fixed intermediate domain D_W. Our main example is a curve of elliptic symmetric differential operators of positive order on a smooth compact manifold with boundary with constant dimension of the spaces of inner solutions and with varying well-posed boundary conditions. Then we shall derive the general spectral flow formulae for them.
英文关键词: Hamiltonian systems;symplectic Banach space;symplectic reduction;Maslov index;spectral flow