Consensus clustering has been widely used in bioinformatics and other applications to improve the accuracy, stability and reliability of clustering results. This approach ensembles cluster co-occurrences from multiple clustering runs on subsampled observations. For application to large-scale bioinformatics data, such as to discover cell types from single-cell sequencing data, for example, consensus clustering has two significant drawbacks: (i) computational inefficiency due to repeatedly applying clustering algorithms, and (ii) lack of interpretability into the important features for differentiating clusters. In this paper, we address these two challenges by developing IMPACC: Interpretable MiniPatch Adaptive Consensus Clustering. Our approach adopts three major innovations. We ensemble cluster co-occurrences from tiny subsets of both observations and features, termed minipatches, thus dramatically reducing computation time. Additionally, we develop adaptive sampling schemes for observations, which result in both improved reliability and computational savings, as well as adaptive sampling schemes of features, which leads to interpretable solutions by quickly learning the most relevant features that differentiate clusters. We study our approach on synthetic data and a variety of real large-scale bioinformatics data sets; results show that our approach not only yields more accurate and interpretable cluster solutions, but it also substantially improves computational efficiency compared to standard consensus clustering approaches.


翻译:在生物信息学和其他应用中广泛使用共识群集,以提高群集结果的准确性、稳定性和可靠性。这一方法将多组群集的共同现象混为一谈,在次级抽样观测中进行。对于大规模生物信息数据的应用,例如从单细胞测序数据中发现细胞类型,共识群集有两个重大缺点:(一) 反复应用群集算法导致的计算效率低下,以及(二) 缺乏对不同群集重要特征的解释性。在本文件中,我们通过开发IMACC来应对这两个挑战:可解释的小型可适应共识群集。我们的方法采用了三大创新。我们共同使用两种观测和特征的微小组群群群群群群群群群群群群群,称为微型群群,从而大大缩短了计算时间。此外,我们为观察制定了适应性抽样计划,这既提高了可靠性,也提高了计算节省了计算率,也降低了特征的适应性抽样计划,通过快速学习最相关的群集群集群集群集特征,从而导致可以解释的解决办法。我们的研究方法采用了三大创新方法,我们只对合成数据和大规模数据计算结果进行精确的计算,我们只进行对比,我们的方法也只是比较了实际的分类群集计算。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
7+阅读 · 2020年8月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年12月23日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
相关论文
Arxiv
13+阅读 · 2021年10月22日
Arxiv
7+阅读 · 2020年8月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年12月23日
Arxiv
5+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员