In this paper, we develop a gradient recovery based linear (GRBL) finite element method (FEM) and a Hessian recovery based linear (HRBL) FEM for second order elliptic equations in non-divergence form. The elliptic equation is casted into a symmetric non-divergence weak formulation, in which second order derivatives of the unknown function are involved. We use gradient and Hessian recovery operators to calculate the second order derivatives of linear finite element approximations. Although, thanks to low degrees of freedom (DOF) of linear elements, the implementation of the proposed schemes is easy and straightforward, the performances of the methods are competitive. The unique solvability and the $H^2$ seminorm error estimate of the GRBL scheme are rigorously proved. Optimal error estimates in both the $L^2$ norm and the $H^1$ seminorm have been proved when the coefficient is diagonal, which have been confirmed by numerical experiments. Superconvergence in errors has also been observed. Moreover, our methods can handle computational domains with curved boundaries without loss of accuracy from approximation of boundaries. Finally, the proposed numerical methods have been successfully applied to solve fully nonlinear Monge-Amp\`{e}re equations.


翻译:在本文中,我们开发了一种基于梯度回收的线性线性(GRBL)有限元素法(FEM)和一种基于黑森回收的线性线性(HRBL)线性线性(FEM)法(FEM),用于非diverence形式的第二顺序椭圆方程式。将椭圆方程式投入一种对称非diverence弱度配方,其中涉及未知函数的第二顺序衍生物。我们使用梯度和海森回收操作员计算线性元素近似线性线性元素的第二顺序衍生物。虽然由于线性元素的自由度较低,拟议的计划的实施既简单又直截了当,但方法的性能是竞争性的。此外,我们提出的方法可以成功地处理计算域,而不会导致MONUBL公式的精确度;最后,我们提出的方法可以顺利地使用数字曲线边界的精确度,最终可以解决MONBA的精确度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员