Sparse principal component analysis (SPCA) has been widely used for dimensionality reduction and feature extraction in high-dimensional data analysis. Despite there are many methodological and theoretical developments in the past two decades, the theoretical guarantees of the popular SPCA algorithm proposed by Zou, Hastie & Tibshirani (2006) based on the elastic net are still unknown. We aim to close this important theoretical gap in this paper. We first revisit the SPCA algorithm of Zou et al. (2006) and present our implementation. Also, we study a computationally more efficient variant of the SPCA algorithm in Zou et al. (2006) that can be considered as the limiting case of SPCA. We provide the guarantees of convergence to a stationary point for both algorithms. We prove that, under a sparse spiked covariance model, both algorithms can recover the principal subspace consistently under mild regularity conditions. We show that their estimation error bounds match the best available bounds of existing works or the minimax rates up to some logarithmic factors. Moreover, we demonstrate the numerical performance of both algorithms in simulation studies.
翻译:尽管过去二十年来在方法和理论上取得了许多进展,但Zou、Hastie和Tibshirani(2006年)提出的基于弹性网的广受欢迎的SPCA算法的理论保障仍然未知。我们的目标是在本文中缩小这一重要的理论差距。我们首先重新审查Zou等人(2006年)的SPCA算法并介绍我们的执行情况。我们还研究了Zou等人(2006年)的SPCA算法的计算效率更高的变方,这可被视为SPCA(2006年)的限制性案例。我们为这两种算法提供了一个趋同于固定点的保证。我们证明,在微小的共变异模式下,这两种算法都能在温和的正常条件下持续恢复主要次空间。我们证明,它们的估计错误与现有工程的最佳范围或微缩成文速率相匹配,达到某些对数系数。此外,我们展示了两个算法在模拟研究中的数字表现。