This paper introduces a general model called CIPNN - Continuous Indeterminate Probability Neural Network, and this model is based on IPNN, which is used for discrete latent random variables. Currently, posterior of continuous latent variables is regarded as intractable, with the new theory proposed by IPNN this problem can be solved. Our contributions are Four-fold. First, we derive the analytical solution of the posterior calculation of continuous latent random variables and propose a general classification model (CIPNN). Second, we propose a general auto-encoder called CIPAE - Continuous Indeterminate Probability Auto-Encoder, the decoder part is not a neural network and uses a fully probabilistic inference model for the first time. Third, we propose a new method to visualize the latent random variables, we use one of N dimensional latent variables as a decoder to reconstruct the input image, which can work even for classification tasks, in this way, we can see what each latent variable has learned. Fourth, IPNN has shown great classification capability, CIPNN has pushed this classification capability to infinity. Theoretical advantages are reflected in experimental results.
翻译:本文提出了一种通用模型 CIPNN - 连续不定概率神经网络,该模型基于用于离散潜在随机变量的 IPNN。目前,连续潜在变量的后验被认为是不可计算的,而通过 IPNN 提出的新理论,这个问题可以得到解决。我们的贡献有四个方面。首先,我们推导了连续潜在随机变量后验计算的解析解,并提出了一个通用分类模型(CIPNN)。其次,我们提出了一种通用的自动编码器称为 CIPAE - 连续不定概率自动编码器,解码器部分不是神经网络,并且首次采用全概率推断模型。第三,我们提出了一种新的可视化潜在随机变量的方法,我们使用 N 维中的一个潜在变量作为解码器来重构输入图片,即使是分类任务也可以这样做,这样我们可以看到每个潜在变量学习了什么。第四,IPNN 已经证明具有很强的分类能力,CIPNN 将这种分类能力推向了无限。理论优势体现在实验结果中。