We first introduce the notion of meta-rank for a 2-parameter persistence module, an invariant that captures the information behind images of morphisms between 1D slices of the module. We then define the meta-diagram of a 2-parameter persistence module to be the M\"{o}bius inversion of the meta-rank, resulting in a function that takes values from signed 1-parameter persistence modules. We show that the meta-rank and meta-diagram contain information equivalent to the rank invariant and the signed barcode. This equivalence leads to computational benefits, as we introduce an algorithm for computing the meta-rank and meta-diagram of a 2-parameter module $M$ indexed by a bifiltration of $n$ simplices in $O(n^3)$ time. This implies an improvement upon the existing algorithm for computing the signed barcode, which has $O(n^4)$ runtime. This also allows us to improve the existing upper bound on the number of rectangles in the rank decomposition of $M$ from $O(n^4)$ to $O(n^3)$. In addition, we define notions of erosion distance between meta-ranks and between meta-diagrams, and show that under these distances, meta-ranks and meta-diagrams are stable with respect to the interleaving distance. Lastly, the meta-diagram can be visualized in an intuitive fashion as a persistence diagram of diagrams, which generalizes the well-understood persistence diagram in the 1-parameter setting.
翻译:我们首先为 2 个参数持久性模块引入元权概念, 这是一种包含模块 1D 切片之间形态化图像背后信息的信息的变量。 我们然后将 2 参数持久性模块的元直观值定义为 M\ "{o}bius 转换元末位值, 由此产生一个函数, 其值取自已签署的 1 参数持久性模块。 我们显示, 超级和 元直观包含等同变量和经签署的条形码的信息。 这种等同导致计算效益, 因为我们引入了计算2 参数模块的正态和正态图的元直观和元直观图的计算算法值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值。 。 。 这种等值值值值值值值值值值导致值值值值值值值值值导致值后值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值</s>