Autonomous navigation of robots in harsh and GPS denied subterranean (SubT) environments with lack of natural or poor illumination is a challenging task that fosters the development of algorithms for pose estimation and mapping. Inspired by the need for real-life deployment of autonomous robots in such environments, this article presents an experimental comparative study of 3D SLAM algorithms. The study focuses on state-of-the-art Lidar SLAM algorithms with open-source implementation that are i) lidar-only like BLAM, LOAM, A-LOAM, ISC-LOAM and hdl graph slam, or ii) lidar-inertial like LeGO-LOAM, Cartographer, LIO-mapping and LIO-SAM. The evaluation of the methods is performed based on a dataset collected from the Boston Dynamics Spot robot equipped with 3D lidar Velodyne Puck Lite and IMU Vectornav VN-100, during a mission in an underground tunnel. In the evaluation process poses and 3D tunnel reconstructions from SLAM algorithms are compared against each other to find methods with most solid performance in terms of pose accuracy and map quality.
翻译:在缺乏自然或低光度的严酷和GPS(SubT)下,机器人在缺乏自然或低光度的原始环境中自主导航是一项具有挑战性的任务,它促进制定用于预测和绘图的算法,受在这种环境中实际部署自主机器人的需要的启发,本篇文章对3D SLAM算法进行了实验性比较研究,研究的重点是在一项地下隧道飞行任务中,利用具有3D Lidar Velodyne Puck Lite 和IMU Vectornav VN-100的、具有开放来源实施功能的尖端Lidar(如BLAM)、LOAM、ISC-LOAM和hdl图Slam或(二)LEGO-LOAM、制图员、LIO-M-M制图员、LIO-SAM和LIO-SAAM等激光内线的激光器,对机器人进行自主导航的自动导航分析。对方法的评估是根据从波士顿动力站收集的数据集进行的,在一项地下隧道飞行任务中,用3D Vecody Lidne Litle Lass Lass li和地图的3Droutreabsmaquetal 进行最准确性分析。</s>