In creativity support and computational co-creativity contexts, the task of discovering appropriate prompts for use with text-to-image generative models remains difficult. In many cases the creator wishes to evoke a certain impression with the image, but the task of conferring that succinctly in a text prompt poses a challenge: affective language is nuanced, complex, and model-specific. In this work we introduce a method for generating images conditioned on desired affect, quantified using a psychometrically validated three-component approach, that can be combined with conditioning on text descriptions. We first train a neural network for estimating the affect content of text and images from semantic embeddings, and then demonstrate how this can be used to exert control over a variety of generative models. We show examples of how affect modifies the outputs, provide quantitative and qualitative analysis of its capabilities, and discuss possible extensions and use cases.


翻译:在创造性支持和计算共孔环境中,发现与文本到图像的基因化模型使用的适当提示的任务仍很困难。在许多情况下,创作者希望对图像产生某种印象,但简洁地在文本提示中赋予这种印象的任务则构成挑战:感官语言有细微差别,复杂,且有模型特点。在这项工作中,我们引入了一种产生以预期影响为条件的图像的方法,使用经精神测定验证的三部分方法进行量化,同时对文本描述加以调整。我们首先培训神经网络,以估计文字和图像从语义嵌入中的影响内容,然后展示如何利用神经网络来控制各种基因化模型。我们举例说明了如何影响产出,提供其能力的定量和定性分析,并讨论可能的扩展和使用案例。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员