Recent advance in fluorescence microscopy enables acquisition of 3D image volumes with better quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images. 3D segmentation using deep learning has achieved promising results in microscopy images. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for microscopy volumes. This paper describes a 3D nuclei segmentation method using 3D convolutional neural networks. A set of synthetic volumes and the corresponding groundtruth volumes are generated automatically using a generative adversarial network. Segmentation results demonstrate that our proposed method is capable of segmenting nuclei successfully in 3D for various data sets.
翻译:最近在荧光显微镜方面的进步使得能够获取质量更高、更深入进入组织的3D图像体积。分解是描述和分析图像中生物结构的一个必要步骤。3D利用深层学习的分解在显微镜中取得了有希望的结果。一个问题是深层学习技术需要大量地面真实性数据,而对于显微镜体积来说,这种数据人工注释是不切实际的。本文描述了3D核心分解方法,使用 3D 进化神经网络。一组合成体积和相应的地面真实性体积是使用基因对抗网络自动生成的。分解结果表明,我们所提议的方法能够在3D中成功地将各种数据集的核分解为3D。