Reference-based image super-resolution (RefSR) aims to exploit auxiliary reference (Ref) images to super-resolve low-resolution (LR) images. Recently, RefSR has been attracting great attention as it provides an alternative way to surpass single image SR. However, addressing the RefSR problem has two critical challenges: (i) It is difficult to match the correspondence between LR and Ref images when they are significantly different; (ii) How to transfer the relevant texture from Ref images to compensate the details for LR images is very challenging. To address these issues of RefSR, this paper proposes a deformable attention Transformer, namely DATSR, with multiple scales, each of which consists of a texture feature encoder (TFE) module, a reference-based deformable attention (RDA) module and a residual feature aggregation (RFA) module. Specifically, TFE first extracts image transformation (e.g., brightness) insensitive features for LR and Ref images, RDA then can exploit multiple relevant textures to compensate more information for LR features, and RFA lastly aggregates LR features and relevant textures to get a more visually pleasant result. Extensive experiments demonstrate that our DATSR achieves state-of-the-art performance on benchmark datasets quantitatively and qualitatively.
翻译:基于参考的图像超级分辨率(RefSR)旨在利用超级分辨率低(LR)图像的辅助参考(Ref)图像作为超级分辨率低(LR)图像的参考(Ref)图像。最近,RefSR一直引起极大关注,因为它为超过单一图像SR提供了替代方法。然而,解决RefSR问题有两个重大挑战:(一) 当图像大不相同时,很难匹配LR和Ref图像之间的对应关系;(二) 如何将Ref图像的相关文本从Ref图像转换为补偿LR图像的细节是非常具有挑战性的。为了解决RefSR的这些问题,本文件提出了一种可变换的注意变换器,即DATSR(DATSR),它具有多个尺度,每个尺度都包括一个纹理特征编码器(TFE)模块、一个基于参考的可变换注意模块和一个残余特征汇总模块。具体地说,TFEFE首先提取图像变异(eg、亮度)对LRFA图像和Ref图像的敏感度特征,然后可以利用多个相关文本来补偿LRRM特征的更多相关信息,以及RFA-ATAGRS-GRS-CS-S-S-S-S-S-S-S-SAL-S-S-S-SLS-S-S-SAL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SAL-S-SAL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SMA-SMA-SAL-SMA-SAL-SAL-SMA-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S