The $r$-th generalized Hamming metric and the $b$-symbol metric are two different generalizations of Hamming metric. The former is used on the wire-tap channel of Type II, and the latter is motivated by the limitations of the reading process in high-density data storage systems and applied to a read channel that outputs overlapping symbols. In this paper, we study the connections among the three metrics (that is, Hamming metric, $b$-symbol metric, and $r$-th generalized Hamming metric) mentioned above and give a conjecture about the $b$-symbol Griesmer Bound for cyclic codes. %Furthermore, we explore the combinatorial function of the size of the $b$-symbol weight set of a code $C$.


翻译:以美元为全方位的Hamming指标和以美元为标本的标本指标是两种不同的Hamming衡量标准,前者用于第二类的线图频道,后者的动机是高密度数据储存系统的读取过程有限,并应用于产出符号重叠的读取渠道。在本文中,我们研究了上述三种指标(即Hamming衡量标准、美元-标本标准和美元-标本标准)之间的联系,并猜测了以美元为标本的环球代码的符号Griesmer圆球。%Permore,我们探讨了美元-标本重量组的大小的组合功能。%Permore,我们探索了美元-标码的美元-标本重量组的组合功能。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
52+阅读 · 2020年9月7日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
PyTorch & PyTorch Geometric图神经网络(GNN)实战
专知
81+阅读 · 2019年6月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月18日
Arxiv
0+阅读 · 2021年11月16日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
PyTorch & PyTorch Geometric图神经网络(GNN)实战
专知
81+阅读 · 2019年6月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员