课程介绍:
深度学习正在改变人工智能领域,但缺乏扎实的理论基础。这种事务状态极大地阻碍了进一步的发展,例如耗时的超参数优化或对抗性机器学习中遇到的非凡困难。我们为期三天的研讨会基于我们确定为当前的主要瓶颈:了解深度神经网络的几何结构。这个问题是数学,计算机科学和实用机器学习的融合。我们邀请这些领域的领导者加强新的合作,并为深度学习的奥秘寻找新的攻击角度。
主讲人:
Peter Bartlett,加州大学伯克利分校教授,工作于计算机科学和统计部门、伯克利人工智能研究实验室、西蒙斯计算理论研究所。
Leon Bottou,一名研究科学家,对机器学习和人工智能有着广泛的兴趣。近年来,在大规模学习和随机梯度算法方面的工作受到了广泛的关注。他也以DjVu文件压缩系统而闻名,于2015年3月加入Facebook人工智能研究。
Anna Gilbert,在芝加哥大学获得理学学士学位,在普林斯顿大学获得数学博士学位;1997年,是耶鲁大学和at&T实验室研究所的博士后研究员。1998年至2004年,她是新泽西州弗洛勒姆公园at&T实验室研究部的技术人员。从那以后,她一直在密歇根大学数学系工作,现在是那里的一名教授。
Piotr Indyk,电气工程和计算机科学系的托马斯D.和弗吉尼亚W.卡伯特教授。计算机科学与人工智能实验室,无线麻省理工学院,大数据学院和MIFODS计算组的成员。兴趣方向:高维计算几何(包括近似最近邻搜索)、数据流算法、稀疏恢复、压缩感知、机器学习。
S. T. Yau,中国科学院数学科学研究所所长,哈佛大学数学系教授。感兴趣的领域:微分几何,微分方程和数学物理。