A low-autocorrelation binary sequences problem with a high figure of merit factor represents a formidable computational challenge. An efficient parallel computing algorithm is required to reach the new best-known solutions for this problem. Therefore, we developed the $\mathit{sokol}_{\mathit{skew}}$ solver for the skew-symmetric search space. The developed solver takes the advantage of parallel computing on graphics processing units. The solver organized the search process as a sequence of parallel and contiguous self-avoiding walks and achieved a speedup factor of 387 compared with $\mathit{lssOrel}$, its predecessor. The $\mathit{sokol}_{\mathit{skew}}$ solver belongs to stochastic solvers and can not guarantee the optimality of solutions. To mitigate this problem, we established the predictive model of stopping conditions according to the small instances for which the optimal skew-symmetric solutions are known. With its help and 99% probability, the $\mathit{sokol}_{\mathit{skew}}$ solver found all the known and seven new best-known skew-symmetric sequences for odd instances from $L=121$ to $L=223$. For larger instances, the solver can not reach 99% probability within our limitations, but it still found several new best-known binary sequences. We also analyzed the trend of the best merit factor values, and it shows that as sequence size increases, the value of the merit factor also increases, and this trend is flatter for larger instances.


翻译:低偏差的二进制序列问题, 其优异系数高, 是一个巨大的计算挑战 。 需要一种高效的平行计算算法, 才能找到这个问题最知名的新解决方案 。 因此, 我们开发了 $\ mathit{ sokol ⁇ mathit{skathit{skew ⁇ {skathit{skathit{skew}$ 求解器 用于 skew对称搜索空间 。 开发的求解器利用图形处理器上平行计算的好处。 求解器将搜索进程组织成一个平行和毗连自保自保行的序列, 并实现了387 87 相对于$\ mathit{lss Orel}, 其前身需要一个高效的平行计算算法 。 $( $) $( sokolkolk) 求解算器中的$( $) 和 美元( rqual- reckr) 解算法序列中所有已知的公式和 Ral- rbisal ral rres ral ral ral rres ral ral ral ral ral rals rals fal ral ral rals fals fals rents fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals falss fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals f rals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals f ex ex ex ex

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月15日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员