A low-autocorrelation binary sequences problem with a high figure of merit factor represents a formidable computational challenge. An efficient parallel computing algorithm is required to reach the new best-known solutions for this problem. Therefore, we developed the $\mathit{sokol}_{\mathit{skew}}$ solver for the skew-symmetric search space. The developed solver takes the advantage of parallel computing on graphics processing units. The solver organized the search process as a sequence of parallel and contiguous self-avoiding walks and achieved a speedup factor of 387 compared with $\mathit{lssOrel}$, its predecessor. The $\mathit{sokol}_{\mathit{skew}}$ solver belongs to stochastic solvers and can not guarantee the optimality of solutions. To mitigate this problem, we established the predictive model of stopping conditions according to the small instances for which the optimal skew-symmetric solutions are known. With its help and 99% probability, the $\mathit{sokol}_{\mathit{skew}}$ solver found all the known and seven new best-known skew-symmetric sequences for odd instances from $L=121$ to $L=223$. For larger instances, the solver can not reach 99% probability within our limitations, but it still found several new best-known binary sequences. We also analyzed the trend of the best merit factor values, and it shows that as sequence size increases, the value of the merit factor also increases, and this trend is flatter for larger instances.
翻译:低偏差的二进制序列问题, 其优异系数高, 是一个巨大的计算挑战 。 需要一种高效的平行计算算法, 才能找到这个问题最知名的新解决方案 。 因此, 我们开发了 $\ mathit{ sokol ⁇ mathit{skathit{skew ⁇ {skathit{skathit{skew}$ 求解器 用于 skew对称搜索空间 。 开发的求解器利用图形处理器上平行计算的好处。 求解器将搜索进程组织成一个平行和毗连自保自保行的序列, 并实现了387 87 相对于$\ mathit{lss Orel}, 其前身需要一个高效的平行计算算法 。 $( $) $( sokolkolk) 求解算器中的$( $) 和 美元( rqual- reckr) 解算法序列中所有已知的公式和 Ral- rbisal ral rres ral ral ral rres ral ral ral ral ral rals rals fal ral ral rals fals fals rents fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals falss fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals f rals fals fals fals fals fals fals fals fals fals fals fals fals fals fals fals f ex ex ex ex