We describe how to implement Simulation of Simplicity (SoS). SoS removes geometric degeneracies in point-in-polygon queries, polyhedron intersection, map overlay, and other 2D and 3D geometric and spatial algorithms by determining the effect of adding non-Archimedian infinitesimals of different orders to the coordinates. Then it modifies the geometric predicates to emulate that, and evaluates them in the usual arithmetic. A geometric degeneracy is a coincidence, such as a vertex of one polygon on an edge of another polygon, that would have probability approaching zero if the objects were distributed i.i.d. uniformly. However, in real data, they can occur often. Especially in 3D, there are too many types of degeneracies to reliably enumerate. But, if they are not handled, then predicates evaluate wrong, and the output topology may be wrong. We describe the theory of SoS, and how several algorithms and programs were successfully modified, including volume of the union of many cubes, point location in a 3D mesh, and intersecting 3D meshes.


翻译:我们描述如何执行简单化模拟( SoS) 。 因此, SS 通过确定在坐标上添加不同顺序的非亚西中度无限动物的效果, 从而在微粒点查询、 多元面交叉点、 地图重叠点、 以及其它 2D 和 3D 几何算法和空间算法中去除几何变异。 然后, 它会修改几何假设, 并用通常的算术来加以效仿, 并且用通常的算术来评价它们。 几何变异性是一个巧合, 例如, 在另一个多边形边缘的一个多边形的顶点, 如果对象分布在 i. i. d. 时, 概率就会接近于零 。 然而, 在真实数据中, 它们会经常发生。 特别是在 3D 中, 有太多种非亚西中度的梯度无法可靠地进行计算 。 但是, 如果它们没有被处理, 则会评估前端错误, 产出表可能是错误的 。 我们描述了 SoS 的理论, 以及一些算法和程序是如何成功地被修改的, 包括许多立方体的组合、 位置 3D 和中间 3D 。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
1+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关主题
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员