Most neural vocoders employ band-limited mel-spectrograms to generate waveforms. If full-band spectral features are used as the input, the vocoder can be provided with as much acoustic information as possible. However, in some models employing full-band mel-spectrograms, an over-smoothing problem occurs as part of which non-sharp spectrograms are generated. To address this problem, we propose UnivNet, a neural vocoder that synthesizes high-fidelity waveforms in real time. Inspired by works in the field of voice activity detection, we added a multi-resolution spectrogram discriminator that employs multiple linear spectrogram magnitudes computed using various parameter sets. Using full-band mel-spectrograms as input, we expect to generate high-resolution signals by adding a discriminator that employs spectrograms of multiple resolutions as the input. In an evaluation on a dataset containing information on hundreds of speakers, UnivNet obtained the best objective and subjective results among competing models for both seen and unseen speakers. These results, including the best subjective score for text-to-speech, demonstrate the potential for fast adaptation to new speakers without a need for training from scratch.
翻译:多数神经蒸气器使用带宽光谱谱仪生成波形。 如果将全波频谱特征用作输入内容, vocoder可以提供尽可能多的声学信息。 但是, 在使用全波光谱仪的某些模型中, 产生非正谱光谱的超移动问题。 为了解决这个问题, 我们提议 UnivNet, 是一个实时合成高菲度波形的神经电解码器。 在语音活动探测领域工作的启发下, 我们添加了一个多分辨率光谱分析器, 使用多种参数组计算多个线性光谱量的多分辨率光谱分析器。 使用全波光谱仪作为输入, 我们期望通过添加一个使用多分辨率分光谱仪作为输入来生成高分辨率信号。 在对包含数百个发言者的信息的数据集进行评估时, UnivitNet 获得了来自不同声音活动的相互竞争的模型中的最佳客观和主观结果。 这些结果, 包括不需从可见的和看不见的演讲者进行快速扫描的文字调整, 包括用于快速的文字调整的最佳主观分数。