Spatio-temporal trajectory analytics is at the core of smart mobility solutions, which offers unprecedented information for diversified applications such as urban planning, infrastructure development, and vehicular networks. Trajectory similarity measure, which aims to evaluate the distance between two trajectories, is a fundamental functionality of trajectory analytics. In this paper, we propose a comprehensive survey that investigates all the most common and representative spatio-temporal trajectory measures. First, we provide an overview of spatio-temporal trajectory measures in terms of three hierarchical perspectives: Non-learning vs. Learning, Free Space vs. Road Network, and Standalone vs. Distributed. Next, we present an evaluation benchmark by designing five real-world transformation scenarios. Based on this benchmark, extensive experiments are conducted to study the effectiveness, robustness,nefficiency, and scalability of each measure, which offers guidelines for trajectory measure selection among multiple techniques and applications such as trajectory data mining, deep learning, and distributed processing.


翻译:Spatio-时间轨迹分析是智能流动解决方案的核心,它为城市规划、基础设施发展和车辆网络等多种应用提供了史无前例的信息。轨迹相似性措施旨在评估两个轨迹之间的距离,是轨迹分析的一个基本功能。在本文件中,我们提议进行一项全面调查,调查所有最常见和最具代表性的时空轨迹测量。首先,我们从三个等级角度概述了时空轨测量措施:非学习对学习、自由空间对道路网络和独立空间对分布式。接下来,我们通过设计五个现实世界转型情景,提出评价基准。根据这一基准,我们进行了广泛的实验,以研究每项测量措施的有效性、稳健性、效率和可扩展性,为在轨迹数据挖掘、深层学习和分布式处理等多种技术和应用中选择轨迹测量提供了指导方针。</s>

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
25+阅读 · 2022年1月3日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员