Masked autoencoders are scalable vision learners, as the title of MAE \cite{he2022masked}, which suggests that self-supervised learning (SSL) in vision might undertake a similar trajectory as in NLP. Specifically, generative pretext tasks with the masked prediction (e.g., BERT) have become a de facto standard SSL practice in NLP. By contrast, early attempts at generative methods in vision have been buried by their discriminative counterparts (like contrastive learning); however, the success of mask image modeling has revived the masking autoencoder (often termed denoising autoencoder in the past). As a milestone to bridge the gap with BERT in NLP, masked autoencoder has attracted unprecedented attention for SSL in vision and beyond. This work conducts a comprehensive survey of masked autoencoders to shed insight on a promising direction of SSL. As the first to review SSL with masked autoencoders, this work focuses on its application in vision by discussing its historical developments, recent progress, and implications for diverse applications.


翻译:蒙面自动编码器是可扩缩的视觉学习者,因为MAE 的称号是 MAE \ cite{he2022masked},这表明视觉中的自我监督学习(SSL)可能具有与NLP相似的轨迹。 具体地说,蒙面预测(如BERT)的基因化托辞任务已成为NLP中事实上的标准SSL做法。 相反,早期的视觉基因化方法尝试被其歧视的对应方埋葬(类似于对比性学习);然而,蒙面图像模型的成功恢复了蒙面自动编码器(过去通常被称为解密自动编码器)的活力。 蒙面自动编码器作为缩小与NLP的BERT差距的一个里程碑,在视觉上和以后都吸引了对SSL的空前关注。 这项工作对蒙面自动编码器进行了全面调查,以洞察SLF有希望的方向。 作为第一个用蒙面自动编码器审查的SLSL,这项工作侧重于在视觉中的应用,讨论其历史发展、最近的进展和对多种应用的影响。

10
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
123+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
25+阅读 · 2021年3月20日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关论文
Arxiv
10+阅读 · 2021年11月10日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
25+阅读 · 2021年3月20日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
151+阅读 · 2017年8月1日
相关基金
Top
微信扫码咨询专知VIP会员