Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.
翻译:感应器和移动装置方面最近的进展使得城市轨迹数据的提供和收集出现了前所未有的增长,从而增加了对更有效管理和分析所产生数据的方法的需求。在这次调查中,我们全面审查了轨迹数据管理的最新研究趋势,包括轨迹预处理、储存、共同轨迹分析工具,例如只询问空间和空间文字轨迹数据,以及轨迹群。我们还探索了四种密切相关的分析性任务,这四种任务通常与互动式或实时处理中的轨迹数据密切相关。深度轨迹学习也是第一次审查的。最后,我们概述了轨迹管理系统为尽量扩大灵活性而应具备的基本素质。