In this note we prove sharp lower error bounds for numerical methods for jump-diffusion stochastic differential equations (SDEs) with discontinuous drift. We study the approximation of jump-diffusion SDEs with non-adaptive as well as jump-adapted approximation schemes and provide lower error bounds of order $3/4$ for both classes of approximation schemes. This yields optimality of the transformation-based jump-adapted quasi-Milstein scheme.


翻译:在本文中,我们证明了数值方法在具有不连续漂移项的跳跃扩散随机微分方程(SDEs)中的尖锐误差下界。我们研究了使用非自适应以及跳跃自适应逼近方案的跳跃扩散SDE的逼近,并为两类逼近方案提供了$3/4$阶的误差下界。这导致了基于变换的跳跃自适应拟米尔斯坦方案的最优性。

0
下载
关闭预览

相关内容

「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
43+阅读 · 2021年1月31日
专知会员服务
51+阅读 · 2020年12月14日
生成扩散模型漫谈:最优扩散方差估计(上)
PaperWeekly
0+阅读 · 2022年9月25日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关VIP内容
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
43+阅读 · 2021年1月31日
专知会员服务
51+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员