项目名称: 耗散型Duffing方程的周期解与稳定性

项目编号: No.11126043

项目类型: 专项基金项目

立项/批准年度: 2012

项目学科: 金属学与金属工艺

项目作者: 梁树青

作者单位: 吉林大学

项目金额: 3万元

中文摘要: 耗散型Duffing方程在数学和工程技术领域都有重要意义,在过去的几十年中,这一类方程周期解的存在性得到了广泛关注和深入研究,但周期解的精确个数和稳定性结论相对较少,值得我们进一步分析。已有文献通常采用无穷模刻画回复力一阶导数,即强制其介于两常数之间,最优常数正是共振值。本项目拟考虑回复力一阶导数跨越共振值,但被两个非常数函数控制,控制函数的p-模满足有界条件情形,耗散型Duffing方程周期解的存在性、精确个数、稳定性、衰减速度、符号与分支等问题。这种p-模刻画方式不仅可以扩大回复力取值范围,而且可说明共振值的最优性仅在无穷模下有意义。

中文关键词: 周期解;共振;解的个数;稳定性;周期和反周期特征值

英文摘要:

英文关键词: periodic solutions;at resonance;exact multiplicity;stability;periodic eigenvalue

成为VIP会员查看完整内容
0

相关内容

【干货书】面向工程师的随机过程,448页pdf
专知会员服务
79+阅读 · 2021年11月3日
【经典书】线性代数与应用,698页pdf
专知会员服务
88+阅读 · 2021年9月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
76+阅读 · 2021年3月16日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
Efficient GlobalPointer:少点参数,多点效果
PaperWeekly
1+阅读 · 2022年2月11日
谈谈自动微分(Automatic Differentiation)
PaperWeekly
1+阅读 · 2022年1月3日
一张图看懂2021苹果十月发布会
威锋网
0+阅读 · 2021年10月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
一文读懂机器学习中的贝叶斯统计学
数据分析
26+阅读 · 2019年5月8日
【资源】这本开放书籍帮你扫清通往ML的数学绊脚石
机器学习算法与Python学习
56+阅读 · 2018年10月28日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
小贴士
相关主题
相关VIP内容
【干货书】面向工程师的随机过程,448页pdf
专知会员服务
79+阅读 · 2021年11月3日
【经典书】线性代数与应用,698页pdf
专知会员服务
88+阅读 · 2021年9月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
76+阅读 · 2021年3月16日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关资讯
Efficient GlobalPointer:少点参数,多点效果
PaperWeekly
1+阅读 · 2022年2月11日
谈谈自动微分(Automatic Differentiation)
PaperWeekly
1+阅读 · 2022年1月3日
一张图看懂2021苹果十月发布会
威锋网
0+阅读 · 2021年10月18日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
一文读懂机器学习中的贝叶斯统计学
数据分析
26+阅读 · 2019年5月8日
【资源】这本开放书籍帮你扫清通往ML的数学绊脚石
机器学习算法与Python学习
56+阅读 · 2018年10月28日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员