Dynamic graph embedding has gained great attention recently due to its capability of learning low dimensional graph representations for complex temporal graphs with high accuracy. However, recent advances mostly focus on learning node embeddings as deterministic "vectors" for static graphs yet disregarding the key graph temporal dynamics and the evolving uncertainties associated with node embedding in the latent space. In this work, we propose an efficient stochastic dynamic graph embedding method (DynG2G) that applies an inductive feed-forward encoder trained with node triplet-based contrastive loss. Every node per timestamp is encoded as a time-dependent probabilistic multivariate Gaussian distribution in the latent space, hence we can quantify the node embedding uncertainty on-the-fly. We adopted eight different benchmarks that represent diversity in size (from 96 nodes to 87,626 and from 13,398 edges to 4,870,863) and diversity in dynamics. We demonstrate via extensive experiments on these eight dynamic graph benchmarks that DynG2G achieves new state-of-the-art performance in capturing the underlying temporal node embeddings. We also demonstrate that DynG2G can predict the evolving node embedding uncertainty, which plays a crucial role in quantifying the intrinsic dimensionality of the dynamical system over time. We obtain a universal relation of the optimal embedding dimension, $L_o$, versus the effective dimensionality of uncertainty, $D_u$, and we infer that $L_o=D_u$ for all cases. This implies that the uncertainty quantification approach we employ in the DynG2G correctly captures the intrinsic dimensionality of the dynamics of such evolving graphs despite the diverse nature and composition of the graphs at each timestamp. Moreover, this $L_0 - D_u$ correlation provides a clear path to select adaptively the optimum embedding size at each timestamp by setting $L \ge D_u$.
翻译:动态嵌入图最近引起了人们的极大关注, 这是因为它有能力学习低维度图解, 以高精确度的复杂时间图。 然而, 最近的进展主要侧重于学习节点嵌入静态图形的确定性“ 矢量 ”, 但却忽略了关键图形时间动态和与隐蔽空间嵌入节点相关的变化中的不确定性。 在这项工作中, 我们提出了一种高效的节点动态图嵌入方法( DynG2G ), 该方法应用了带节点的进化前方图解。 经过了以节点为基点的三重对比损失。 每个节点的节点被编码为基于时间的确定性“ 矢量 ”, 从而我们可以量化在暗点上嵌入不确定性的节点。 我们采用了八种不同的基准, 从96个节点到87, 从13,398节点边缘到4, 870, 863 和动态的多样化。 我们通过这八种动态图的大规模实验, Dyn2G 实现了新的状态- 稳定度, 的内嵌化性, 也代表了这个直径G 的内存的内存的内存 。