In this paper, we present a combinatorial proof of the Gaussian product inequality (GPI) conjecture in all dimensions when the components of the centered Gaussian vector $\boldsymbol{X} = (X_1,X_2,\dots,X_d)$ can be written as linear combinations, with nonnegative coefficients, of the components of a standard Gaussian vector. The proof comes down to the monotonicity of a certain ratio of gamma functions. We also show that our condition is weaker than assuming the vector of absolute values $|\boldsymbol{X}| = (|X_1|,|X_2|,\dots,|X_d|)$ to be in the multivariate totally positive of order $2$ ($\mathrm{MTP}_2$) class on $[0,\infty)^d$, for which the conjecture is already known to be true.
翻译:在本文中, 当中央高斯矢量 $\boldsymbol{X} = (X_ 1,X_2,\dts,X_d) 的成分可以写成标准高斯矢量的成分的线性组合, 加上非负系数, 我们展示了高斯产品不平等( GPI) 所有维度的组合性猜想。 证据从某种伽马函数比值的单一性到某种伽马功率。 我们还显示, 我们的状况比假设绝对值 $ ⁇ boldsymbol{X} = ( ⁇ X_ 1 ⁇, {X_2},\\dts, ⁇ X_d ⁇ ) 的矢量要弱, 在 $ $( mathrm{MTP ⁇ 2$) 类的多变量完全正值中, $( $( mathrm{MTP}2$) 类中, 这样的猜想当然是真实的 。