Equilibrium solution concepts of normal-form games, such as Nash equilibria, correlated equilibria, and coarse correlated equilibria, describe the joint strategy profiles from which no player has incentive to unilaterally deviate. They are widely studied in game theory, economics, and multiagent systems. Equilibrium concepts are invariant under certain transforms of the payoffs. We define an equilibrium-inspired distance metric for the space of all normal-form games and uncover a distance-preserving equilibrium-invariant embedding. Furthermore, we propose an additional transform which defines a better-response-invariant distance metric and embedding. To demonstrate these metric spaces we study $2\times2$ games. The equilibrium-invariant embedding of $2\times2$ games has an efficient two variable parameterization (a reduction from eight), where each variable geometrically describes an angle on a unit circle. Interesting properties can be spatially inferred from the embedding, including: equilibrium support, cycles, competition, coordination, distances, best-responses, and symmetries. The best-response-invariant embedding of $2\times2$ games, after considering symmetries, rediscovers a set of 15 games, and their respective equivalence classes. We propose that this set of game classes is fundamental and captures all possible interesting strategic interactions in $2\times2$ games. We introduce a directed graph representation and name for each class. Finally, we leverage the tools developed for $2\times2$ games to develop game theoretic visualizations of large normal-form and extensive-form games that aim to fingerprint the strategic interactions that occur within.
翻译:博弈的平衡解概念,例如纳什均衡、相关均衡和粗略相关均衡,描述了没有任何参与者倾向于单方面改变策略的联合策略配置。它们在博弈论、经济学和多智能体系统中广泛研究。平衡概念在一定变化收益的变换下不变。我们为所有正态形式博弈定义了一种平衡启发的距离度量,并发现了一种距离保持平衡不变的嵌入。此外,我们提出了一个额外的变换,定义了一个更好地响应不变的距离度量和嵌入。为展示这些距离度量空间,我们研究了 $2\times2$ 游戏。$2\times2$ 游戏的平衡不变嵌入具有高效的两个变量参数化(从八个减少到两个),其中每个变量几何地描述单位圆上的一个角度。可以从嵌入中空间推断出有趣的属性,包括:均衡支持、循环、竞争、协调、距离、最佳响应和对称性。在考虑对称性后,$2\times2$ 游戏的最佳响应不变嵌入重新发现了一组15个游戏及其各自的等价类。我们提出这组游戏类是基本的,并捕捉了 $2\times2$ 游戏中所有可能的有趣战略相互作用。我们引入了一个有向图表示和每个类的名称。最后,我们利用为 $2\times2$ 游戏开发的工具来开发博弈理论可视化的大型正态形式和广义形式游戏,旨在指纹化内部发生的战略相互作用。