Existing manifold learning methods are not appropriate for image retrieval task, because most of them are unable to process query image and they have much additional computational cost especially for large scale database. Therefore, we propose the iterative manifold embedding (IME) layer, of which the weights are learned off-line by unsupervised strategy, to explore the intrinsic manifolds by incomplete data. On the large scale database that contains 27000 images, IME layer is more than 120 times faster than other manifold learning methods to embed the original representations at query time. We embed the original descriptors of database images which lie on manifold in a high dimensional space into manifold-based representations iteratively to generate the IME representations in off-line learning stage. According to the original descriptors and the IME representations of database images, we estimate the weights of IME layer by ridge regression. In on-line retrieval stage, we employ the IME layer to map the original representation of query image with ignorable time cost (2 milliseconds). We experiment on five public standard datasets for image retrieval. The proposed IME layer significantly outperforms related dimension reduction methods and manifold learning methods. Without post-processing, Our IME layer achieves a boost in performance of state-of-the-art image retrieval methods with post-processing on most datasets, and needs less computational cost.


翻译:现有多重学习方法不适合图像检索任务, 因为他们大多无法处理查询图像, 并且它们还有大量额外的计算成本, 特别是大型数据库。 因此, 我们提出迭代元嵌入层( IME) 层, 其重量通过不受监督的战略从离线学习, 以便通过不完整的数据来探索内在的多元。 在包含 27000 张图像的大型数据库中, IME 层比其他多重学习方法要快120倍以上, 以在查询时嵌入原始的显示器。 我们将位于高维空间中多层的数据库图像的原始描述器嵌入多个基于多维的显示器中, 迭接地生成离线学习阶段的 IME 显示器。 根据原始描述器和数据库图像的 IME 显示器, 我们通过 峰值回归来估算 IME 层的重量。 在在线检索阶段, 我们使用 IME 层 来绘制原始显示可忽略的时间成本的查询图像的原始表示器(2 毫秒)。 我们实验了五个公共标准数据集, 拟议的 IME 级大大超越了相关维度, 在离线的尺寸的演示中生成方法,, 和 后级 的 的 的 方法

8
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
57+阅读 · 2019年12月21日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员