Existing manifold learning methods are not appropriate for image retrieval task, because most of them are unable to process query image and they have much additional computational cost especially for large scale database. Therefore, we propose the iterative manifold embedding (IME) layer, of which the weights are learned off-line by unsupervised strategy, to explore the intrinsic manifolds by incomplete data. On the large scale database that contains 27000 images, IME layer is more than 120 times faster than other manifold learning methods to embed the original representations at query time. We embed the original descriptors of database images which lie on manifold in a high dimensional space into manifold-based representations iteratively to generate the IME representations in off-line learning stage. According to the original descriptors and the IME representations of database images, we estimate the weights of IME layer by ridge regression. In on-line retrieval stage, we employ the IME layer to map the original representation of query image with ignorable time cost (2 milliseconds). We experiment on five public standard datasets for image retrieval. The proposed IME layer significantly outperforms related dimension reduction methods and manifold learning methods. Without post-processing, Our IME layer achieves a boost in performance of state-of-the-art image retrieval methods with post-processing on most datasets, and needs less computational cost.
翻译:现有多重学习方法不适合图像检索任务, 因为他们大多无法处理查询图像, 并且它们还有大量额外的计算成本, 特别是大型数据库。 因此, 我们提出迭代元嵌入层( IME) 层, 其重量通过不受监督的战略从离线学习, 以便通过不完整的数据来探索内在的多元。 在包含 27000 张图像的大型数据库中, IME 层比其他多重学习方法要快120倍以上, 以在查询时嵌入原始的显示器。 我们将位于高维空间中多层的数据库图像的原始描述器嵌入多个基于多维的显示器中, 迭接地生成离线学习阶段的 IME 显示器。 根据原始描述器和数据库图像的 IME 显示器, 我们通过 峰值回归来估算 IME 层的重量。 在在线检索阶段, 我们使用 IME 层 来绘制原始显示可忽略的时间成本的查询图像的原始表示器(2 毫秒)。 我们实验了五个公共标准数据集, 拟议的 IME 级大大超越了相关维度, 在离线的尺寸的演示中生成方法,, 和 后级 的 的 的 方法