【导读】图数据处理是一个长期存在的研究课题,近年来又被深度学习领域广泛关注。相关研究在数量和广度上飞速增长,但这也导致了知识系统化的缺失和对早期文献关注的缺失。《A Gentle Introduction to Deep Learning for Graphs》是图深度学习领域的教程导论,它倾向于对主流概念和架构的一致和渐进的介绍,而不是对最新文献的阐述。

教程在介绍概念和想法时采用了自上而下的方法并保留了清晰的历史观点,为此,导论在第2节中提供了图表示学习的泛化形式,将图表示学习泛化为一种基于局部和迭代的结构化信息处理过程。同时,介绍了架构路线图,整个导论也是围绕该路线图进行开展的。导论聚焦于面向局部和迭代的信息处理过程,因为这些过程与神经网络的体系更为一致。因此,导论会淡化那些基于图谱理论的全局方法(假设有一个固定的邻接矩阵)。

后续,导论介绍了可以用于组装构建新奇和有效图神经网络模型的基本构建单元。导论还对图深度学习中有意思的研究挑战和应用进行了阐述,同时介绍了相关的方法。导论的内容大致如下:

  • 摘要

  • 简介

  • 高阶概览

    • 数学符号

    • 动机

    • 路线图

    • 局部关系和信息的迭代处理

    • 三种上下文传播机制

  • 构建块/单元

    • 邻接聚合

    • 池化

    • 面向图嵌入的节点聚合

    • 总结

  • 任务

    • 无监督学习

    • 有监督学习

    • 生成式学习

    • 总结

  • 其他方法和任务的总结

    • 图谱方法

    • 随机游走

    • 图上的对抗训练和攻击

    • 图序列生成模型

  • 开放挑战和研究方法

    • 时间进化图

    • 偏置方差权衡

    • 边信息的明智用法

    • 超图学习

  • 应用

    • 化学和药物设计

    • 社交网络

    • 自然语言处理

    • 安全

    • 时空预测

    • 推荐系统

  • 总结

成为VIP会员查看完整内容
103

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
【课程推荐】人工智能导论:Introduction to Articial Intelligence
专知会员服务
100+阅读 · 2019年12月20日
通俗易懂!《图机器学习导论》附69页PPT
专知
55+阅读 · 2019年12月27日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
基于LSTM深层神经网络的时间序列预测
论智
21+阅读 · 2018年9月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
干货|基于图卷积网络的图深度学习
DataCanvas大数据云平台
9+阅读 · 2017年6月8日
Arxiv
35+阅读 · 2020年1月2日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
7+阅读 · 2018年12月26日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关论文
Arxiv
35+阅读 · 2020年1月2日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
7+阅读 · 2018年12月26日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
8+阅读 · 2018年5月15日
微信扫码咨询专知VIP会员