Contrastive learning has emerged as an essential approach for self-supervised learning in computer vision. The central objective of contrastive learning is to maximize the similarities between two augmented versions of the same image (positive pairs), while minimizing the similarities between different images (negative pairs). Recent studies have demonstrated that harder negative samples, i.e., those that are difficult to distinguish from anchor sample, play a more critical role in contrastive learning. In this paper, we propose a novel featurelevel method, namely sampling synthetic hard negative samples for contrastive learning (SSCL), to exploit harder negative samples more effectively. Specifically, 1) we generate more and harder negative samples by mixing negative samples, and then sample them by controlling the contrast of anchor sample with the other negative samples. 2) Considering that the negative samples obtained by sampling may have the problem of false negative samples, we further debias the negative samples. Our proposed method improves the classification performance on different image datasets and can be readily applied to existing methods.


翻译:对比学习已经成为计算机视觉中自监督学习的重要方法,其中核心目标是最大化同一图像的两个增强版本之间的相似性(正对),同时最小化不同图像之间的相似性(负对)。近期的研究已经证明,更难的负样本,即难以与锚样本区分的样本,在对比学习中起着更加关键的作用。在本文中,我们提出了一种新的特征级方法,即利用合成难负样本用于对比学习(SSCL),更加有效地利用更难的负样本。具体而言,1)我们通过混合负样本来生成更多和更难的负样本,然后通过控制锚样本与其他负样本之间的对比度来对它们进行采样。2)考虑到通过采样获得的负样本可能存在误差,我们进一步纠正了负样本。我们提出的方法提高了不同图像数据集上的分类性能,并可轻松应用于现有方法中。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
【MIT】硬负样本的对比学习
专知会员服务
40+阅读 · 2020年10月14日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月22日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
【MIT】硬负样本的对比学习
专知
13+阅读 · 2020年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关论文
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月22日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
31+阅读 · 2020年9月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员