Sound source localization is crucial in acoustic sensing and monitoring-related applications. In this paper, we do a comprehensive analysis of improvement in sound source localization by combining the direction of arrivals (DOAs) with their derivatives which quantify the changes in the positions of sources over time. This study uses the SALSA-Lite feature with a convolutional recurrent neural network (CRNN) model for predicting DOAs and their first-order derivatives. An update rule is introduced to combine the predicted DOAs with the estimated derivatives to obtain the final DOAs. The experimental validation is done using TAU-NIGENS Spatial Sound Events (TNSSE) 2021 dataset. We compare the performance of the networks predicting DOAs with derivative vs. the one predicting only the DOAs at low SNR levels. The results show that combining the derivatives with the DOAs improves the localization accuracy of moving sources.
翻译:声音源本地化在声学感测和监测相关应用中至关重要。 在本文中,我们通过将抵达者的方向及其衍生物结合起来,全面分析声源本地化的改进情况,这些衍生物将抵达者的方向和来源位置随时间变化的数量化。本研究报告使用SALSA-Lite特征和一个循环循环性神经网络模型,用于预测DOA及其第一级衍生物。采用了更新规则,将预测的DOA与估计衍生物结合起来,以获得最终的DOA。实验性验证工作是使用TAU-NIGENSSE(TNSE) 2021空间声音事件(TNSSE) 数据集完成的。我们比较了预测DOA的网络性能与预测DA的衍生物与仅预测低水平的DAR的网络性能。结果显示,将衍生物和DOA的结合提高了移动源的本地化精度。