项目名称: 单分子方法研究抗癌药物与生物大分子的相互作用动力学

项目编号: No.11274374

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王鹏业

作者单位: 中国科学院物理研究所

项目金额: 93万元

中文摘要: 近年来,随着光镊、磁镊、原子力显微镜(AFM)等单分子微操纵手段的发展,越来越多的生物大分子运动规律被揭示出来,极大加深了人们对于生命现象的微观认识。这些物理学研究方法的特点是从复杂的万象中找出普遍的规律,这样的运动规律具有很强的普适性、定量性和精确性。铂类抗癌药物(例如顺铂)虽然已经被广泛应用于肿瘤的临床治疗,但其微观作用机制还远没有完全明了。本项目将在我们研究顺铂与DNA作用的基础上,进一步利用单分子方法研究这类药物与DNA以及核小体的相互作用动力学。我们将利用磁镊、AFM等手段精确定量地揭示第二、第三代铂类药物(例如奥沙利铂)对DNA驻留长度、轮廓长度、构象变化等物理形态的影响,并且观察这些药物之间的协同作用,揭示这些分子间相互作用的物理机制。我们还将研究药物对于组蛋白与DNA相互作用的影响,有望将铂类药物对于核小体这一重要结构的影响揭示出来。

中文关键词: 生物大分子;DNA;单分子;抗癌药物;组蛋白

英文摘要: Recently, with the development of single molecule manipulation method, such as optical tweezer, magnetic tweezer and atomic force microscope (AFM), more and more dynamic behavior of biomacromolecules are revealed. These researches greatly enriched our knowledge of life phenomena in the microcosmic scale. The characteristic of these physical methods is to find general roles from complicated systems, and being of universality, quantitativeness and high precision. Although platinum anticancer drugs, such as cisplatin, are widely used clinical medicines for the treatment of malignant tumor, but the microcosmic mechanism that how they work is unclear. In this project, based on our previous study of interaction between cisplatin and DNA, with single molecule method, we will further study the interaction dynamics among platinum anticancer drugs, DNA and nucleosome. We will use magnetic tweezer and atomic force microscope to study the persistence length, contour length, conformation variation, etc. of DNA affected by the second or third generation platinum anticancer drugs (e.g. oxaliplatin). We will also observe the combination effect of these drugs to reveal the physical interaction mechanism of these molecules. Furthermore, we will study the effect of these drugs on the interaction between histones and DNA in order t

英文关键词: biomacromolecule;DNA;single molecule;anticancer drug;histone

成为VIP会员查看完整内容
0

相关内容

【干货书】数据挖掘药物发现,347页pdf
专知会员服务
130+阅读 · 2021年9月20日
专知会员服务
28+阅读 · 2021年8月27日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
72+阅读 · 2021年5月11日
专知会员服务
44+阅读 · 2020年11月13日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
53+阅读 · 2018年12月11日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关VIP内容
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
130+阅读 · 2021年9月20日
专知会员服务
28+阅读 · 2021年8月27日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
72+阅读 · 2021年5月11日
专知会员服务
44+阅读 · 2020年11月13日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员