Wireless links using massive MIMO transceivers are vital for next generation wireless communications networks networks. Precoding in Massive MIMO transmission requires accurate downlink channel state information (CSI). Many recent works have effectively applied deep learning (DL) to jointly train UE-side compression networks for delay domain CSI and a BS-side decoding scheme. Vitally, these works assume that the full delay domain CSI is available at the UE, but in reality, the UE must estimate the delay domain based on a limited number of frequency domain pilots. In this work, we propose a linear pilot-to-delay (P2D) estimator that transforms sparse frequency pilots to the truncated delay CSI. We show that the P2D estimator is accurate under frequency downsampling, and we demonstrate that the P2D estimate can be effectively utilized with existing autoencoder-based CSI estimation networks. In addition to accounting for pilot-based estimates of downlink CSI, we apply unrolled optimization networks to emulate iterative solutions to compressed sensing (CS), and we demonstrate better estimation performance than prior autoencoder-based DL networks. Finally, we investigate the efficacy of trainable CS networks for in a differential encoding network for time-varying CSI estimation, and we propose a new network, MarkovNet-ISTA-ENet, comprised of both a CS network for initial CSI estimation and multiple autoencoders to estimate the error terms. We demonstrate that this heterogeneous network has better asymptotic performance than networks comprised of only one type of network.
翻译:使用大型IMO收发器的无线链接对下一代无线通信网络来说至关重要。 MIMO 传输的预码需要准确的下行频道状态信息。 许多最近的工作有效地应用了深度学习 (DL) 来联合培训UE- 侧压缩网络以进行延迟的域域 CSI 和 BS 侧解码计划。 重要地说, 这些工程假定, UE 可以获得完全延迟域 CSI, 但实际上, EU 必须在有限频域域域域试算的基础上估计延迟域 。 在这项工作中, 我们提议建立一个线性向下运行( P2D) 的线性向下行( P2D) 频道状态信息。 许多最近的工作有效地应用了深度学习( DL ) 来将稀少的频率试点项目转换到快速延迟的 CSI 。 我们显示, P2DS 估计是准确的频率下行域网 。 我们用不易的C- C- C- C- 级网络 显示, 我们用一个基于的网络的性能比 C- C- C- C- 显示前的系统网络更精确的性网络的性, 显示一个功能网络, 显示一个我们用前的功能网络的功能网络, 和 C- C- C- C- 显示的网络的功能网络的功能- 显示一个更好的网络的性能 。