Hybrid precoding is a cost-efficient technique for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) communications. This paper proposes a deep learning approach by using a distributed neural network for hybrid analog-and-digital precoding design with limited feedback. The proposed distributed neural precoding network, called DNet, is committed to achieving two objectives. First, the DNet realizes channel state information (CSI) compression with a distributed architecture of neural networks, which enables practical deployment on multiple users. Specifically, this neural network is composed of multiple independent sub-networks with the same structure and parameters, which reduces both the number of training parameters and network complexity. Secondly, DNet learns the calculation of hybrid precoding from reconstructed CSI from limited feedback. Different from existing black-box neural network design, the DNet is specifically designed according to the data form of the matrix calculation of hybrid precoding. Simulation results show that the proposed DNet significantly improves the performance up to nearly 50% compared to traditional limited feedback precoding methods under the tests with various CSI compression ratios.
翻译:混合预码是用于毫米波(mmWave)大规模多输入多输出通信的一种成本效率高的技术。本文件提出一种深层次学习方法,即使用分布式神经网络进行混合模拟和数字预码设计,并有有限的反馈。拟议的分布式神经预码网络称为DNet,致力于实现两个目标。首先,DNet通过分布式神经网络结构实现频道状态信息的压缩,使多用户能够实际部署。具体地说,这个神经网络由多个独立的子网络组成,结构相同,参数相同,减少了培训参数的数量和网络的复杂性。第二,DNet从有限的反馈中从重建后的CSI学会计算混合预码。不同于现有的黑盒神经网络设计,DNet是根据混合预编码矩阵计算的数据格式专门设计的。模拟结果表明,拟议的DNet大大改进了业绩,达到近50 %,而根据使用各种CSI压缩比率的测试,传统的有限反馈预码方法则有将近50 %。