Time series classification(TSC) has always been an important and challenging research task. With the wide application of deep learning, more and more researchers use deep learning models to solve TSC problems. Since time series always contains a lot of noise, which has a negative impact on network training, people usually filter the original data before training the network. The existing schemes are to treat the filtering and training as two stages, and the design of the filter requires expert experience, which increases the design difficulty of the algorithm and is not universal. We note that the essence of filtering is to filter out the insignificant frequency components and highlight the important ones, which is similar to the attention mechanism. In this paper, we propose an attention mechanism that acts on spectrum (SAM). The network can assign appropriate weights to each frequency component to achieve adaptive filtering. We use L1 regularization to further enhance the frequency screening capability of SAM. We also propose a segmented-SAM (SSAM) to avoid the loss of time domain information caused by using the spectrum of the whole sequence. In which, a tumbling window is introduced to segment the original data. Then SAM is applied to each segment to generate new features. We propose a heuristic strategy to search for the appropriate number of segments. Experimental results show that SSAM can produce better feature representations, make the network converge faster, and improve the robustness and classification accuracy.
翻译:时间序列分类(TSC)始终是一项重要而具有挑战性的研究任务。随着深层次学习的广泛应用,越来越多的研究人员使用深层次学习模式来解决TSC问题。由于时间序列总是包含大量噪音,对网络培训有负面影响,人们通常在培训网络之前过滤原始数据。现有的计划是将过滤和培训作为两个阶段处理,过滤器的设计需要专家经验,这增加了算法的设计难度,而且并非普遍性。我们注意到过滤的本质是过滤微小频率组件,并突出与关注机制相类似的重要内容。在本文件中,我们提议一个频谱操作的注意机制。网络可以给每个频率组件分配适当的权重,以实现适应性过滤。我们用L1正规化来进一步加强SAM的频率筛选能力。我们还提议一个分层SAM(SAM)(SAM)(SAM)(SAM)(SAM)(SAM)(SAM)),以避免由于使用整个序列的频谱而导致的时间域信息丢失。我们注意到过滤的本质是过滤窗口被引入与原始数据相类似的部分。然后,我们建议对SAM(SAM)应用一个连接窗口来对频谱操作操作操作操作。然后对频段进行适当的同步进行调整,使每个部分进行精确化,以便产生新的实验性分析结果。我们提出一个更快速化的特性显示新的功能,我们可以显示新的SAM(SSAAM) 以产生更精确性功能。