Automatic analysis of bioacoustic signals is a fundamental tool to evaluate the vitality of our planet. Frogs and bees, for instance, may act like biological sensors providing information about environmental changes. This task is fundamental for ecological monitoring still includes many challenges such as nonuniform signal length processing, degraded target signal due to environmental noise, and the scarcity of the labeled samples for training machine learning. To tackle these challenges, we present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently. The proposed classifier does not require a large amount of training data and handles nonuniform signal length natively. Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces generated by applying Singular Spectrum Analysis (SSA). Then, a subspace is designed to expose discriminative features. The proposed model shares end-to-end capabilities, which is desirable in modern machine learning systems. This formulation provides a segmentation-free and noise-tolerant approach to represent and classify bioacoustic signals and a highly compact signal descriptor inherited from SSA. The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species. Experimental results on three bioacoustic datasets have shown the competitive performance of the proposed method compared to commonly employed methods for bioacoustics signal classification in terms of accuracy.


翻译:生物声学信号自动分析是评估地球生命力的基本工具,例如,青蛙和蜜蜂可以像生物传感器一样,提供环境变化的信息。这一任务对于生态监测来说仍然至关重要,仍然包括许多挑战,例如不统一的信号长度处理、环境噪音导致目标信号退化,以及培训机器学习所需的标签样本稀少等。为了应对这些挑战,我们提出了一个生物声学信号分类器,配备了一种具有区别性的机制,以有效获取有用的分析和分类特征。提议的分类器不需要大量培训数据,并本地处理非统一信号长度。与目前面向任务的生物声学识别方法不同,拟议的模型依赖于将输入信号转换成病媒次空间,通过应用Singular Spectrum分析(SSA)产生。然后,一个子空间旨在暴露歧视特征。拟议的模型共享端对端能力,这在现代机器学习系统中是可取的。这种配置法提供了一种无分解和噪音容忍的方法,用来代表和分类生物声学信号和高度紧凑信号的信号分级本长度。与当前生物声学识别方法不同,拟议模式依赖于三个具有挑战性的生物感官遗传性的数据方法。在生物感官实验性数据的三种方法上展示。在生物感官实验性结果中,使用三种方法上显示生物感官结果的结果。

0
下载
关闭预览

相关内容

【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月12日
Arxiv
0+阅读 · 2021年5月10日
Learning Discriminative Model Prediction for Tracking
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员