Hyperspectral images (HSI) consist of rich spatial and spectral information, which can potentially be used for several applications. However, noise, band correlations and high dimensionality restrict the applicability of such data. This is recently addressed using creative deep learning network architectures such as ResNet, SSRN, and A2S2K. However, the last layer, i.e the classification layer, remains unchanged and is taken to be the softmax classifier. In this article, we propose to use a watershed classifier. Watershed classifier extends the watershed operator from Mathematical Morphology for classification. In its vanilla form, the watershed classifier does not have any trainable parameters. In this article, we propose a novel approach to train deep learning networks to obtain representations suitable for the watershed classifier. The watershed classifier exploits the connectivity patterns, a characteristic of HSI datasets, for better inference. We show that exploiting such characteristics allows the Triplet-Watershed to achieve state-of-art results. These results are validated on Indianpines (IP), University of Pavia (UP), and Kennedy Space Center (KSC) datasets, relying on simple convnet architecture using a quarter of parameters compared to previous state-of-the-art networks.
翻译:超光谱图像(HSI)由丰富的空间和光谱信息组成,可以用于若干应用。然而,噪音、波段相关性和高维度限制了这类数据的可应用性。最近,利用ResNet、SERN和A2S2K等创新的深层次学习网络结构,例如ResNet、SERN和A2S2K等,来解决这个问题。然而,最后一个层,即分类层,保持不变,并被认为是软分子分类器。在本篇文章中,我们提议使用一个分水层分类器。水层分类器将来自数学形态的流域操作器扩展为分类。在其香草形式中,流域分类器没有任何可训练的参数。在本篇文章中,我们提议采用新的方法,培训深层次学习网络,以获得适合流域分类器的演示。流域分类器利用连接模式,即高光层信息系统数据集的特征,以更好地推断。我们表明,利用这些特性使三流水系能够取得最新结果。这些结果在印第安平原(IP)、帕维亚大学(UPI)和肯尼迪空间中心(KSC-Knet)使用先前的简单坐标网基参数,以前的平坦的州图图进行对比。