Results of image stitching can be perceptually divided into single-perspective and multiple-perspective. Compared to the multiple-perspective result, the single-perspective result excels in perspective consistency but suffers from projective distortion. In this paper, we propose two single-perspective warps for natural image stitching. The first one is a parametric warp, which is a combination of the as-projective-as-possible warp and the quasi-homography warp via dual-feature. The second one is a mesh-based warp, which is determined by optimizing a total energy function that simultaneously emphasizes different characteristics of the single-perspective warp, including alignment, naturalness, distortion and saliency. A comprehensive evaluation demonstrates that the proposed warp outperforms some state-of-the-art warps, including homography, APAP, AutoStitch, SPHP and GSP.


翻译:图像缝合的结果可以分化为视觉和多重视觉。 与多重视觉结果相比,单一视觉结果在视觉一致性方面优于视觉,但受到幻觉扭曲的影响。 在本文中,我们提出了自然图像缝合的两种单一视觉扭曲。第一个是参数扭曲,它是通过双重特征的“预测-可能-扭曲”和准摄影扭曲的组合。第二个是网状扭曲,这是通过优化一个同时强调单一视觉扭曲的不同特征,包括校准、自然性、扭曲和突出特征的总能量功能来决定的。 一项全面评价表明,拟议的扭曲超越了某些状态-艺术的扭曲,包括同源法、APAPAP、AutoStitch、SPHP和普惠制。

4
下载
关闭预览

相关内容

图像拼接(image stitching)是指将两张或更多的有重叠部分的影像,拼接成一张全景图或是高分辨率影像的技术。图像拼接有两大步骤:图像配准和图像融合
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
8+阅读 · 2018年11月27日
Arxiv
4+阅读 · 2018年11月7日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
6+阅读 · 2018年5月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员