Hyperspectral images (HSIs) with narrow spectral bands can capture rich spectral information, making them suitable for many computer vision tasks. One of the fundamental limitations of HSI is its low spatial resolution, and several recent works on super-resolution(SR) have been proposed to tackle this challenge. However, due to HSI cameras' diversity, different cameras capture images with different spectral response functions and the number of total channels. The existing HSI datasets are usually small and consequently insufficient for modeling. We propose a Meta-Learning-Based Super-Resolution(MLSR) model, which can take in HSI images at an arbitrary number of input bands' peak wavelengths and generate super-resolved HSIs with an arbitrary number of output bands' peak wavelengths. We artificially create sub-datasets by sampling the bands from NTIRE2020 and ICVL datasets to simulate the cross-dataset settings and perform HSI SR with spectral interpolation and extrapolation on them. We train a single MLSR model for all sub-datasets and train dedicated baseline models for each sub-dataset. The results show the proposed model has the same level or better performance compared to the-state-of-the-art HSI SR methods.


翻译:光谱带狭窄的超光谱图像(HSIs)可以捕捉丰富的光谱信息,使其适合许多计算机视觉任务。HSI的基本局限性之一是其空间分辨率低,并提出了应对这一挑战的几项最近关于超分辨率(SR)的工作。然而,由于HSI照相机的多样性,不同相机摄取具有不同光谱反应功能和总频道数目的图像。现有的HSI数据集通常很小,因此不足以建模。我们提议了一个基于超分辨率的MLSR模型,该模型可以在任意数量的投入波长高峰时以HSI图像取用任意数字的峰值波长,并产生具有任意数量的最高分辨率的超溶解的HSI。我们人为地创建子数据集,对NTIRE20和ICVL的波段进行取样,以模拟交叉数据集设置,并用光谱内推和外推法执行HSI。我们为所有子数据集的分级模型培训一个单一的MLSR模型,并为每个子数据集培训一个专门基线模型,为每个分级的性能进行比较。我们提出的结果显示与HSI的模型。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
专知会员服务
113+阅读 · 2020年10月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
161+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
专知会员服务
113+阅读 · 2020年10月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
161+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员