Designing effective rehabilitation strategies for upper extremities, particularly hands and fingers, warrants the need for a computational model of human motor learning. The presence of large degrees of freedom (DoFs) available in these systems makes it difficult to balance the trade-off between learning the full dexterity and accomplishing manipulation goals. The motor learning literature argues that humans use motor synergies to reduce the dimension of control space. Using the low-dimensional space spanned by these synergies, we develop a computational model based on the internal model theory of motor control. We analyze the proposed model in terms of its convergence properties and fit it to the data collected from human experiments. We compare the performance of the fitted model to the experimental data and show that it captures human motor learning behavior well.
翻译:设计出有效的末端康复战略,特别是手和手指,这说明有必要建立人类运动学习的计算模型。这些系统中存在大量自由(DoFs),因此很难在学习完全的灵巧性和实现操纵目标之间取得平衡。运动学习文献认为,人类利用发动机协同效应来减少控制空间的维度。利用这些协同效应所覆盖的低维空间,我们根据运动控制的内部模型理论开发了一个计算模型。我们分析了拟议的模型的趋同性,使之与从人类实验中收集的数据相适应。我们比较了适合模型的性能和实验数据,并表明它捕捉了人体运动学习行为。