Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.
翻译:当今的原子模拟产生更复杂的系统的长期轨迹。 分析这些数据、 发现元稳定状态并发现其性质正变得越来越具有挑战性。 在本文中, 我们首先使用变异方法来校正动态动态, 以发现模拟中最慢的动态模式。 这使得系统的不同元数据状态能够被定位并按等级排列。 元状态特征的物理描述符是通过机器学习方法发现的。 在两种蛋白质( Chignolin 和 Bovine Pancreatic Trypsin Inhibitor ) 中, 我们展示了如何在几秒钟内不努力地进行这种分析。 我们的方法的另一个优点是, 它可以用于分析不偏向和偏向的模拟。