Recent progress in audio source separation lead by deep learning has enabled many neural network models to provide robust solutions to this fundamental estimation problem. In this study, we provide a family of efficient neural network architectures for general purpose audio source separation while focusing on multiple computational aspects that hinder the application of neural networks in real-world scenarios. The backbone structure of this convolutional network is the SUccessive DOwnsampling and Resampling of Multi-Resolution Features (SuDoRM-RF) as well as their aggregation which is performed through simple one-dimensional convolutions. This mechanism enables our models to obtain high fidelity signal separation in a wide variety of settings where variable number of sources are present and with limited computational resources (e.g. floating point operations, memory footprint, number of parameters and latency). Our experiments show that SuDoRM-RF models perform comparably and even surpass several state-of-the-art benchmarks with significantly higher computational resource requirements. The causal variation of SuDoRM-RF is able to obtain competitive performance in real-time speech separation of around 10dB scale-invariant signal-to-distortion ratio improvement (SI-SDRi) while remaining up to 20 times faster than real-time on a laptop device.


翻译:深层学习导致的声源分离铅的最近进展使许多神经网络模型能够为这一基本估计问题提供有力的解决方案。在本研究中,我们提供了一套高效神经网络结构,用于一般目的音源分离,同时侧重于阻碍在现实世界情景中应用神经网络的多种计算方面。这一连动网络的骨干结构是SUDoRM-RF模型具有超优性Dwnsamping和重塑多分辨率特征(SuDoRM-RF)及其集成,这些模型是通过简单的单维演算完成的。这个机制使我们的模型能够在多种环境中获得高度忠诚的信号分离,这些环境中存在着数量不一的源,而且计算资源有限(例如浮点操作、记忆足迹、参数和耐久性)。我们的实验表明,SuDoRM-RF模型具有可比较性,甚至超过数个最先进的基准,而且计算资源要求也高得多。 SuDORM-RF的因果变异性能使得我们的模型能够在大约10个B级语言分离的实时语音上取得竞争性性信号分辨性性,同时将存储存储存储器改进到20-DRODRDRPDRPMER的实时改进。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员