题目: A Survey of the Recent Architectures of Deep Convolutional Neural Networks
摘要:
深度卷积神经网络(CNNs)是一种特殊类型的神经网络,在计算机视觉和图像处理等领域的多项竞赛中均有出色的表现。CNN有趣的应用领域包括图像分类与分割、目标检测、视频处理、自然语言处理、语音识别等。深度卷积神经网络强大的学习能力很大程度上是由于它使用了多个特征提取阶段,可以从数据中自动学习表示。大量数据的可用性和硬件技术的改进加速了CNNs的研究,最近出现了非常有趣的深度卷积神经网络架构。事实上,人们已经探索了几个有趣的想法来促进CNNs的发展,比如使用不同的激活和丢失函数、参数优化、正则化和架构创新。然而,深度卷积神经网络的代表性能力的主要提升是通过架构上的创新实现的。特别是利用空间和信道信息、建筑的深度和宽度以及多路径信息处理的思想得到了广泛的关注。同样,使用一组层作为结构单元的想法也越来越流行。因此,本次调查的重点是最近报道的深度CNN架构的内在分类,因此,将CNN架构的最新创新分为七个不同的类别。这七个类别分别基于空间开发、深度、多路径、宽度、特征图开发、通道提升和注意力。对CNN的组成部分、当前CNN面临的挑战和应用进行了初步的了解。