There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.
翻译:高级驱动器辅助系统以及自主机器人和飞行器对物体探测的兴趣日益浓厚。 为使这些创新系统能够实现, 我们需要更快的物体探测。 在这项工作中, 我们调查以特定领域近似值(即类别认知图像大小的缩放和提议规模的缩放)来权衡精确度和速度之间的权衡, 以便进行两个最先进的深层次基于学习的物体探测元结构。 我们研究静态和动态地应用近效的有效性, 以了解它们的潜力和适用性。 通过在图像网络VID数据集上进行实验, 我们发现特定领域近似值在提高系统速度而不降低目标探测器的精确度方面有很大的潜力, 也就是说, 以7. 5x的速度加速动态特定领域近似值。 为此, 我们提出我们关于采集特定领域近似值的洞察的洞察, 并设计一个验证系统运行时间, AutoFocus, 利用动态特定领域近似值。