We present R-LINS, a lightweight robocentric lidar-inertial state estimator, which estimates robot ego-motion using a 6-axis IMU and a 3D lidar in a tightly-coupled scheme. To achieve robustness and computational efficiency even in challenging environments, an iterated error-state Kalman filter (ESKF) is designed, which recursively corrects the state via repeatedly generating new corresponding feature pairs. Moreover, a novel robocentric formulation is adopted in which we reformulate the state estimator concerning a moving local frame, rather than a fixed global frame as in the standard world-centric lidar-inertial odometry(LIO), in order to prevent filter divergence and lower computational cost. To validate generalizability and long-time practicability, extensive experiments are performed in indoor and outdoor scenarios. The results indicate that R-LINS outperforms lidar-only and loosely-coupled algorithms, and achieve competitive performance as the state-of-the-art LIO with close to an order-of-magnitude improvement in terms of speed.
翻译:我们提出了R-LINS,这是一个轻量级的强盗中心利达内皮国家测量仪,它使用一个6轴IMU和一个3D利达在一个紧密结合的方案中估算机器人自动,为了即使在具有挑战性的环境中也实现稳健和计算效率,我们设计了一个循环错误状态Kalman过滤器(ESKF),通过反复生成新的相应的功能配方来循环纠正国家。此外,还采用了一种新型的强盗中心方程式,其中我们重新配置关于移动地方框架的国家估计仪,而不是一个固定的全球框架,如标准的世界中心利达尔内皮眼测量仪(LIO)中那样,以防止过滤偏差和较低的计算成本。为了验证通用性和长期实用性,在室内和室外情景中进行了广泛的实验。结果显示,LINS超越了只使用液态和松散相相相的算法,并在速度上达到接近于岩层级改进的状态LIO的竞争性性表现。