In the regime of change-point detection, a nonparametric framework based on scan statistics utilizing graphs representing similarities among observations is gaining attention due to its flexibility and good performances for high-dimensional and non-Euclidean data sequences, which are ubiquitous in this big data era. However, this graph-based framework encounters problems when there are repeated observations in the sequence, which often happens for discrete data, such as network data. In this work, we extend the graph-based framework to solve this problem by averaging or taking union of all possible optimal graphs resulted from repeated observations. We consider both the single change-point alternative and the changed-interval alternative, and derive analytic formulas to control the type I error for the new methods, making them fast applicable to large datasets. The extended methods are illustrated on an application in detecting changes in a sequence of dynamic networks over time. All proposed methods are implemented in an R package gSeg available on CRAN.


翻译:在变化点探测制度下,一个基于扫描统计的非参数性框架,利用显示不同观测结果相似的图表进行扫描,由于这一框架具有灵活性,而且在这个大数据时代数据序列中,高维数据序列和非欧化数据序列的性能良好,因此日益受到注意。然而,在这种数据序列中反复观测时,以图形为基础的框架遇到了问题,这种序列中经常出现离散数据,例如网络数据。在这项工作中,我们扩大基于图形的框架,通过平均或结合从反复观测中得出的所有可能的最佳图表来解决这一问题。我们考虑了单位变化点替代品和变化间替代数据,并得出了分析公式,以控制新方法的I型错误,使其迅速适用于大型数据集。扩展的方法在用于探测动态网络序列随时间变化时加以说明。所有拟议方法都在CRAN上提供的R 套件 gSeg中实施。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员