We study the problem of zeroth-order (black-box) optimization of a Lipschitz function $f$ defined on a compact subset $\mathcal X$ of $\mathbb R^d$, with the additional constraint that algorithms must certify the accuracy of their recommendations. We characterize the optimal number of evaluations of any Lipschitz function $f$ to find and certify an approximate maximizer of $f$ at accuracy $\varepsilon$. Under a weak assumption on $\mathcal X$, this optimal sample complexity is shown to be nearly proportional to the integral $\int_{\mathcal X} \mathrm{d}\boldsymbol x/( \max(f) - f(\boldsymbol x) + \varepsilon )^d$. This result, which was only (and partially) known in dimension $d=1$, solves an open problem dating back to 1991. In terms of techniques, our upper bound relies on a packing bound by Bouttier al. (2020) for the Piyavskii-Shubert algorithm that we link to the above integral. We also show that a certified version of the computationally tractable DOO algorithm matches these packing and integral bounds. Our instance-dependent lower bound differs from traditional worst-case lower bounds in the Lipschitz setting and relies on a local worst-case analysis that could likely prove useful for other learning tasks.
翻译:本文研究了在$\mathbb R^d$的紧致子集$\mathcal X$上定义的Lipschitz函数$f$的零阶(黑盒)优化问题,并添加了证明算法推荐解的准确性的约束条件。我们对于任意Lipschitz函数$f$,描述了发现和证明近似极大值$f$的最优评估次数。在对$\mathcal X$进行弱假设下,这个最优样本复杂度被证明与$\int_{\mathcal X} \mathrm{d}\boldsymbol x/( \max(f) - f(\boldsymbol x) + \varepsilon )^d$的积分几乎成正比。这个结果只有在$d=1$时被部分知道,解决了追溯至1991年的一个开放问题。在技术上,我们的上界依赖于Bouttier等人(2020年)提出的Piyavskii-Shubert算法的打包边界,我们将其与上述积分联系起来。我们还展示了计算可行的DOO算法的认证版本与这个打包和积分边界相匹配。我们的实例相关的下界不同于Lipschitz设置中传统的最坏情况下界,并且依赖于可能对于其他学习任务有用的局部最坏情况分析。