To understand the origins of materials properties, neutron scattering experiments at three-axes spectrometers (TAS) investigate magnetic and lattice excitations in a sample by measuring intensity distributions in its momentum (Q) and energy (E) space. The high demand and limited availability of beam time for TAS experiments however raise the natural question whether we can improve their efficiency or make better use of the experimenter's time. In fact, using TAS, there are a number of scientific questions that require searching for signals of interest in a particular region of Q-E space, but when done manually, it is time consuming and inefficient since the measurement points may be placed in uninformative regions such as the background. Active learning is a promising general machine learning approach that allows to iteratively detect informative regions of signal autonomously, i.e., without human interference, thus avoiding unnecessary measurements and speeding up the experiment. In addition, the autonomous mode allows experimenters to focus on other relevant tasks in the meantime. The approach that we describe in this article exploits log-Gaussian processes which, due to the log transformation, have the largest approximation uncertainties in regions of signal. Maximizing uncertainty as an acquisition function hence directly yields locations for informative measurements. We demonstrate the benefits of our approach on outcomes of a real neutron experiment at the thermal TAS EIGER (PSI) as well as on results of a benchmark in a synthetic setting including numerous different excitations.


翻译:为了了解材料特性的起源,在三轴光谱仪(TAS)进行中子散射实验,通过测量其动力(Q)和能量(E)空间的强度分布,在样本中调查磁度和岩浆振荡;TAS试验的需求量大,光束可用时间有限,这自然提出了我们是否能够提高其效率或更好地利用实验者的时间的问题;事实上,利用TAS,需要在若干科学问题上寻找对Q-E空间特定区域感兴趣的信号,但是,如果手工完成,测量点可能花时间和低效率,因为测量点可能位于背景等非信息化区域;积极学习是一种很有希望的一般机器学习方法,可以反复探测自动信号的信息区,也就是说,在没有人类干扰的情况下,避免不必要的测量和加快试验时间。此外,自主模式允许实验者同时关注其他相关任务。我们在本篇文章中描述的利用日志-Gussian进程,由于日志转换,测量点可能会耗费时间和低效率,因为测量点可能位于背景等非信息化区域。积极学习是一种很有希望的一般机器学习方法,可以反复地探测信息区,即避免不必要的测量,从而确定我们不同温度测量结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月18日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员