To understand the origins of materials properties, neutron scattering experiments at three-axes spectrometers (TAS) investigate magnetic and lattice excitations in a sample by measuring intensity distributions in its momentum (Q) and energy (E) space. The high demand and limited availability of beam time for TAS experiments however raise the natural question whether we can improve their efficiency or make better use of the experimenter's time. In fact, using TAS, there are a number of scientific questions that require searching for signals of interest in a particular region of Q-E space, but when done manually, it is time consuming and inefficient since the measurement points may be placed in uninformative regions such as the background. Active learning is a promising general machine learning approach that allows to iteratively detect informative regions of signal autonomously, i.e., without human interference, thus avoiding unnecessary measurements and speeding up the experiment. In addition, the autonomous mode allows experimenters to focus on other relevant tasks in the meantime. The approach that we describe in this article exploits log-Gaussian processes which, due to the log transformation, have the largest approximation uncertainties in regions of signal. Maximizing uncertainty as an acquisition function hence directly yields locations for informative measurements. We demonstrate the benefits of our approach on outcomes of a real neutron experiment at the thermal TAS EIGER (PSI) as well as on results of a benchmark in a synthetic setting including numerous different excitations.
翻译:为了了解材料特性的起源,在三轴光谱仪(TAS)进行中子散射实验,通过测量其动力(Q)和能量(E)空间的强度分布,在样本中调查磁度和岩浆振荡;TAS试验的需求量大,光束可用时间有限,这自然提出了我们是否能够提高其效率或更好地利用实验者的时间的问题;事实上,利用TAS,需要在若干科学问题上寻找对Q-E空间特定区域感兴趣的信号,但是,如果手工完成,测量点可能花时间和低效率,因为测量点可能位于背景等非信息化区域;积极学习是一种很有希望的一般机器学习方法,可以反复探测自动信号的信息区,也就是说,在没有人类干扰的情况下,避免不必要的测量和加快试验时间。此外,自主模式允许实验者同时关注其他相关任务。我们在本篇文章中描述的利用日志-Gussian进程,由于日志转换,测量点可能会耗费时间和低效率,因为测量点可能位于背景等非信息化区域。积极学习是一种很有希望的一般机器学习方法,可以反复地探测信息区,即避免不必要的测量,从而确定我们不同温度测量结果。