Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.
翻译:动态线性模型(DLMS)通常用于时间序列分析,因为其多功能结构、简单的循环更新、处理缺失数据的能力以及概率预测。然而,计算时间序列的选择有限:高山DLMS需要连续数据,而基于Poisson的替代品往往缺乏足够的模型灵活性。我们为计时序列引入了一种新的半参数方法,通过扭曲高山 DLM来扭曲计时序列。扭曲功能有两个组成部分:一个(非参数)变换操作器,提供分配灵活性,一个圆形操作器,以确保对离散数据生成过程的正确支持。我们为扭曲的DLMM开发共推论,为状态空间过滤和平滑动分布提供分析和循环更新。我们利用这些结果为计时和预测制作定制和高效的算法,包括用于离线分析的蒙特卡洛模拟和用于在线推断的最佳粒子过滤法。这个框架统一和扩展了各种离散时间序列模型,并且对于自然计数、四舍值和多变量的计算法计算方法是有效的。我们利用这些算法来得出一个极好的每日预测和计算方法。