Cluster-randomized experiments are increasingly used to evaluate interventions in routine practice conditions, and researchers often adopt model-based methods with covariate adjustment in the statistical analyses. However, the validity of model-based covariate adjustment is unclear when the working models are misspecified, leading to ambiguity of estimands and risk of bias. In this article, we first adapt two conventional model-based methods, generalized estimating equations and linear mixed models, with weighted g-computation to achieve robust inference for cluster- and individual-average treatment effects. Furthermore, we propose an efficient estimator for each estimand that allows for flexible covariate adjustment and additionally addresses cluster size variation dependent on treatment assignment and other cluster characteristics. Such cluster size variations often occur post-randomization and can lead to bias of model-based methods if ignored. For our proposed method, we show that when the nuisance functions are consistently estimated by machine learning algorithms, the estimator is consistent, asymptotically normal, and efficient. When the nuisance functions are estimated via parametric working models, it remains triply-robust. Simulation studies and the analysis of a recent cluster-randomized experiment demonstrate that the proposed methods are superior to existing alternatives.
翻译:集束处理实验越来越多地用于评价常规做法条件下的干预措施,研究人员往往采用基于模型的计算方法,在统计分析中进行共变调整;然而,当工作模型被错误地描述时,基于模型的共变调整的有效性并不明确,导致估计值的模糊性和偏差风险。在本条中,我们首先调整两种基于常规的模式方法,即通用估计方程和线性混合模型,并采用加权G-计算法,以便对集和个人平均处理效果作出强有力的推断。此外,我们提议为每个估计值提供一个高效的估算器,允许灵活地共变调整,并额外解决取决于治疗分配和其他组特性的集体大小变化。这类集体规模变化往往发生于随机化之后,如果忽视的话,可能导致基于模型的方法偏差。我们提出的方法表明,当机器学习算法对扰动功能作出一致的估计时,估计器是一贯、自然正常和高效的。当通过对准度工作模型估算的振动性调整时,当通过对调制工作模型估算的调控股功能时,它仍然以三重制方式进行模拟研究,并演示现有的试验。