Robots can effectively grasp and manipulate objects using their 3D models. In this paper, we propose a simple shape representation and a reconstruction method that outperforms state-of-the-art methods in terms of geometric metrics and enables grasp generation with high precision and success. Our reconstruction method models the object geometry as a pair of depth images, composing the "shell" of the object. This representation allows using image-to-image residual ConvNet architectures for 3D reconstruction, generates object reconstruction directly in the camera frame, and generalizes well to novel object types. Moreover, an object shell can be converted into an object mesh in a fraction of a second, providing time and memory efficient alternative to voxel or implicit representations. We explore the application of shell representation for grasp planning. With rigorous experimental validation, both in simulation and on a real setup, we show that shell reconstruction encapsulates sufficient geometric information to generate precise grasps and the associated grasp quality with over 90% accuracy. Diverse grasps computed on shell reconstructions allow the robot to select and execute grasps in cluttered scenes with more than 93% success rate.


翻译:机器人可以使用它们的 3D 模型有效地掌握和操控天体 。 在本文中, 我们提出一个简单的形状表示法和一种重建方法, 在几何测量度上优于最先进的方法, 并且能够以高度精确和成功的方式实现触摸生成。 我们的重建方法将天体几何模型作为一对深度图像来模型, 组成天体的“ 壳状” 。 这个表示法允许在 3D 重建中使用图像到图像的残余 ConNet 结构, 直接在摄像框架中生成对象重建, 并且将物体的重建概括到新的物体类型 。 此外, 一个天体外壳可以在第二小部分中转换成物体网格, 提供有效的时间和记忆替代 voxel 或隐含的表达方式。 我们探索将天体表示法应用来捕捉规划。 我们通过严格的实验验证, 在模拟和真实的设置中, 我们展示壳体再组合足够的几何测量信息, 来产生精确的捕捉取结果, 和相关的抓取质量超过 90% 。 在 罐壳体重建中计算得 。 在 罐壳体重建中计算得 计算得 使机器人能够以超过 超过 93%的成功率 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
fastlane 入门使用
CocoaChina
4+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
相关资讯
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
fastlane 入门使用
CocoaChina
4+阅读 · 2019年4月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员