While the advent of Graph Neural Networks (GNNs) has greatly improved node and graph representation learning in many applications, the neighborhood aggregation scheme exposes additional vulnerabilities to adversaries seeking to extract node-level information about sensitive attributes. In this paper, we study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data. We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance. Our method creates a strong defense against inference attacks, while only suffering small loss in task performance. Theoretically, we analyze the effectiveness of our framework against a worst-case adversary, and characterize an inherent trade-off between maximizing predictive accuracy and minimizing information leakage. Experiments across multiple datasets from recommender systems, knowledge graphs and quantum chemistry demonstrate that the proposed approach provides a robust defense across various graph structures and tasks, while producing competitive GNN encoders for downstream tasks.
翻译:虽然图形神经网络(GNNS)的出现极大地改善了许多应用程序的节点和图形代表学习,但邻里汇总计划暴露了试图获取敏感属性的节点信息的对手的更多脆弱性。 在本文中,我们研究了在学习图形结构数据时通过信息模糊来保护敏感属性的问题。我们提出了一个框架,以便通过全面变异和瓦塞尔斯坦距离的对抗性培训,在当地过滤预先确定的敏感属性。我们的方法在任务性能方面为推断攻击提供了有力的防御,但只遭受了很小的损失。理论上,我们分析了我们框架对最坏的对手的有效性,并确定了最大限度的预测准确性和尽量减少信息泄漏之间的内在权衡。从推荐者系统、知识图形和量子化学的多套数据实验表明,拟议的方法为各种图表结构和任务提供了强有力的防御,同时为下游任务产生了具有竞争力的GNN编码器。