【南洋理工大学】图神经网络,Graph Neural Networks,附121页ppt

2019 年 10 月 28 日 专知
【南洋理工大学】图神经网络,Graph Neural Networks,附121页ppt

导读

南洋理工大学计算机学院深度学习课程第14讲:图神经网络,由Xavier Bresson主讲,主要内容包括传统卷积网络,频域图卷积网络和空域图卷积网络,全面详细地介绍了GCN的背景、挑战、发展历程、模型和研究方向。


作者 | Xavier Bresson
编译 | Xiaowen


完整PPT下载

请关注专知公众号(点击上方蓝色专知关注

  • 后台回复“NTU-GNN” 就可以获取南洋理工大学GNN121页教程的下载链接~


第一部分:传统卷积网络
    1. 结构
    2. 图结构数据
第二部分:频域图卷积网络
    1. 问题定义
    2. 图理论
        2.1 频域图卷积
        2.2 图池化
    3. 频域图卷积神经网络
    4. 应用
第三部分:空域图卷积网络
    1. 问题定义
    2. 空域图结构
    3. Quantum Chemistry
    4. Operations Research
    5. DGL
结论

篇幅有限,本文仅截取部分PPT内容,完整内容请下载全文Slides查看。


……
篇幅有限,本文仅截取部分PPT内容,完整内容请下载全文Slides查看。

-END-
专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
请加专知小助手微信(扫一扫如下二维码添加), 获取专知VIP会员码 ,加入专知人工智能主题群,咨询技术商务合作~
点击“阅读原文”,了解注册成为 专知VIP会员 
登录查看更多
114

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

芬兰阿尔托大学CSE4890深度学习课程第7讲:图神经网络,由Alexander Ilin主讲,全面详细地介绍了GNN的背景动机、GCN、循环关系网络、通用网络。

成为VIP会员查看完整内容
0
151

课程介绍: 最近,图神经网络 (GNN) 在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。GNN 在对图形中节点间的依赖关系进行建模方面能力强大,使得图分析相关的研究领域取得了突破性进展。本次课程对比传统的卷积神经网络以及图谱图卷积与空间图卷积,从理论知识入手,并结合相关论文进行详细讲解。

主讲人: Xavier Bresson,人工智能/深度学习方面的顶级研究员,培训师和顾问。在“图深度学习”上的NeurIPS'17和CVPR'17(2019年顶级人工智能会议排名)上的演讲者,在剑桥,加州大学洛杉矶分校,布朗,清华,庞加莱,海德堡等地进行了30多次国际演讲。

课程大纲:

  • 传统卷积神经网络
  • 谱图图卷积
  • 空间图卷积
  • 总结
成为VIP会员查看完整内容
0
210

课程介绍: 最近两年,注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一,本课程从基础着手,由浅及深,详细介绍注意力神经网络。

主讲人: Xavier Bresson,人工智能/深度学习方面的顶级研究员,培训师和顾问。在“图深度学习”上的NeurIPS'17和CVPR'17(2019年顶级人工智能会议排名)上的演讲者,在剑桥,加州大学洛杉矶分校,布朗,清华,庞加莱,海德堡等地进行了30多次国际演讲。

课程大纲:

  • 神经网络
  • 神经网络sets
  • 记忆网络
  • Transformers
  • seq2seq Transformers
  • 语言模型Transformers
  • 图网络VS神经网络
  • 总结
成为VIP会员查看完整内容
0
118
小贴士
相关论文
Filippo Maria Bianchi,Daniele Grattarola,Cesare Alippi
23+阅读 · 2020年6月3日
Boris Knyazev,Graham W. Taylor,Mohamed R. Amer
3+阅读 · 2019年10月28日
Signed Graph Attention Networks
Junjie Huang,Huawei Shen,Liang Hou,Xueqi Cheng
6+阅读 · 2019年9月5日
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou,Ganqu Cui,Zhengyan Zhang,Cheng Yang,Zhiyuan Liu,Lifeng Wang,Changcheng Li,Maosong Sun
4+阅读 · 2019年7月10日
Hao Peng,Jianxin Li,Qiran Gong,Senzhang Wang,Yuanxing Ning,Philip S. Yu
5+阅读 · 2019年2月25日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
18+阅读 · 2019年1月3日
Yao Ma,Ziyi Guo,Zhaochun Ren,Eric Zhao,Jiliang Tang,Dawei Yin
15+阅读 · 2018年10月24日
Petar Veličković,Guillem Cucurull,Arantxa Casanova,Adriana Romero,Pietro Liò,Yoshua Bengio
7+阅读 · 2018年2月4日
Brian Kenji Iwana,Seiichi Uchida
6+阅读 · 2018年1月25日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
5+阅读 · 2018年1月10日
Top